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1. Introduction

The Standard Model (SM) of particle physics has been enormously successful in predicting

a wide range of phenomena with great accuracy and precision. In spite of this, however,

there are specific issues that lead one to conclude that the SM is only an effective theory,

which is thus incapable of describing physics at arbitrarily high energies. Searches for new

physics in the ATLAS detector of the Large Hadron Collider (LHC) will be as exciting as

they are challenging.

There is a plethora of models on the market that attempt to solve the problems of the

SM, and supersymmetry is a relatively strong contender (see [1] for a concise introduction).

By generalising the space-time symmetries of the gauge field theories of the SM to include
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a transformation between fermion and boson states, one introduces ‘superpartners’ for the

SM particles which differ from their SM counterparts only by their spin if supersymmetry

is unbroken; in the broken case they differ also in mass. In the process, one obtains a

solution to the gauge hierarchy problem of the SM whilst also ensuring gauge unification

at high energy scales, provided that the masses of the superpartners are below the TeV

range. This provides the major motivation for supersymmetry searches at the LHC, and

much effort has already been invested in developing strategies to measure particle masses

and SUSY parameters at ATLAS.

It is noted that an interesting feature of most supersymmetric models is the existence of

a multiplicatively conserved quantum number called R-parity, in which each superpartner

is assigned R = −1, and each SM particle is assigned R = +1. R-parity conservation both

ensures that sparticles must be produced in pairs and forces the lightest supersymmetric

particle (LSP) to be absolutely stable. Thus, we obtain an ideal dark matter candidate,

and can use recent measurements of dark matter relic density to impose constraints on

SUSY models.

The lack of any current collider observations of sparticles means that SUSY must be a

broken symmetry, and our ignorance of the breaking mechanism unfortunately means that

the parameter set of the full Minimal Supersymmetric Standard Model (MSSM) numbers

124 (where SUSY breaking has given us 105 parameters on top of the SM).1 The difficulty

of exploring such a large parameter space has meant that practically all phenomenological

studies to date have been performed in simplified models in which various assumptions are

made to reduce the parameter set to something of the order of 5, of which two are fixed. A

popular example is the minimal Supergravity breaking scenario (mSUGRA, also referred

to by some authors as the CMSSM), in which one unifies various GUT scale parameters,

obtaining the following parameter set: the scalar mass m0, the gaugino mass m1/2, the

trilinear coupling A0, the ratio of Higgs expectation values tanβ, and the sign of the SUSY

Higgs mass parameter µ.

Many ATLAS studies have been performed in the mSUGRA framework, using both

full and fast simulation [2 – 9], and one obtains an interesting range of phenomenologies

over the parameter set. However, although one can devise relatively strong theoretical

motivations for gaugino mass universality at the GUT scale, there is no reason why the

soft supersymmetry-breaking scalar masses of the electroweak Higgs multiplets should be

universal, and it is thus particularly important to consider models in which one breaks the

degeneracy of these masses. These Non-Universal Higgs Mass (NUHM) models lead to yet

more interesting phenomenological effects, and a set of benchmark points consistent with

current measurements of the dark matter relic density, the b → sγ decay branching ratio

and gµ − 2 was presented in [10]. Furthermore, it was observed in [11] that relatively rare

phenomena in the mSUGRA parameter space become much more ‘mainstream’ in NUHM

models, and hence they make important cases for study, given that they are not excluded

experimentally.

1Note that the number of MSSM parameters mentioned in this section is true only for the ‘old’ (i.e.

pre-neutrino oscillation) Standard Model.
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Our recent work has involved the use of Markov Chain methods to generalise the

parameter spaces one can constrain using ATLAS data [6]. In the process, we have found

that NUHM models are an interesting testing ground for new effects, and the purpose

of this note is to highlight a particular observation related to cascade decays. For our

particular model choice, decays featuring chains of successive two body decays are not

present, and yet it is possible to observe decay chains involving a combination of two and

three body decays. Thus, it should still be possible to measure masses by the standard

method of searching for kinematic endpoints, but we will first need to derive expressions

for their expected position. We note that this introduces an extra layer of ambiguity,

since most previous studies have implicitly assumed that endpoints are due to two-body

decay chains. Cascade decays featuring the three body decay mode could also occur in,

for example, mSUGRA models,2 though to the best of our knowledge they have not been

studied before.

Section 2 summarises our particular choice of NUHM model, reviewing both the mass

spectrum and the relevant decay channels. We derive the three body endpoint positions for

a general decay in section 3, before going on to apply these to our NUHM model in section

4. Finally, section 5 discusses the prospects for more detailed analysis of the NUHM model,

before section 6 gives our final conclusions.

2. Selection of NUHM model

The NUHM parameter space is related to that of mSUGRA by the addition of two extra

parameters that express the non-universality of the two MSSM Higgs doublets. These can

be specified at the GUT scale as the masses m2
Hu

and m2
Hd

, or alternatively the conditions

of electroweak symmetry breaking allow one to trade these for the weak scale parameters

µ and mA. In selecting a model for study, we found the benchmark model γ in [10] to be

particularly interesting. The two body decay modes of the χ0
2 are not allowed, and hence

one will not observe the characteristic two body endpoints seen in a variety of mSUGRA

parameter space but, rather, will have to develop other strategies for analysis. Furthermore,

it is compatible with all current experimental constraints arising from, e.g. WMAP and

limits on the branching ratios of rare decays.

The γ benchmark point is specified as follows:

m0 = 328 GeV, m1/2 = 247 GeV

tanβ = 20, A0 = 0, |µ| = 325 GeV and mA = 240 GeV

with a top quark mass of 178 GeV 3 and µ greater than zero.

We have used ISAJET 7.72 [12] to generate the mass spectrum and decay information

for the point, and we summarise the results in tables 1, and tables 2 and 3 respectively. In

addition, we used HERWIG 6.5 [13] to estimate a total SUSY production cross-section of

2A suitable mSUGRA model for study would be obtained by taking the parameters of the NUHM

benchmark point studied here and setting the GUT scale Higgs masses to the universal scalar mass m0.
3Since a lower value of the top mass than that used during this study is now preferred, we have checked

that the mass spectrum is not particularly sensitive to the top mass at this point in parameter space.
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Figure 1: This cascade decay chain, includ-

ing a three body decay, will give rise to kine-

matic endpoints.

Figure 2: The same decay as in figure 1,

with the two leptons treated as a single ob-

ject L.

33 pb at this point. This differs from that given in reference [10], though is consistent with

the fact that Herwig calculation is only performed to leading order, whereas [10] quotes a

next to leading order result.

The most relevant part of the decay table concerns the decay modes of the χ̃0
2, and we

see in table 2 that we do not obtain two body decays to sleptons, but rather have three

body decays to quarks or leptons. Given that we have appreciable branching fractions for

squark decays featuring χ̃0
2’s we will obtain decay chains of the form shown in figure 1,

and thus we should be able to observe kinematic endpoints in lepton-jet invariant mass

distributions using a similar method to that which has been previously documented for

chains of successive two body decays. Each maximum will occur at a position given by a

function of the three sparticle masses in the decay chain. Note that although the branching

ratio for the decay χ̃0
2 → χ̃0

1l
+l− is small, the large SUSY production cross-section will

guarantee a reasonable sample of events (approximately 3000 events for an initial ATLAS

sample of 30 fb−1).

3. Kinematic endpoint derivation

3.1 Introduction

The R-parity conservation referred to in section 1 has important implications for collider

experiments: sparticles must be pair produced, and the LSP is stable. Thus, if R-parity is

indeed conserved, each SUSY event at the LHC will have two sparticle decay chains, and

the escaping LSPs will make it difficult to fully reconstruct events. It is, however, possible

to construct distributions that are sensitive to sparticle masses.

In this paper we consider the decay q̃ → qχ̃0
2 followed by χ̃0

2 → l+l−χ̃0
1 as shown in

figure 1. Such decays are fairly easy to select given that one can look for events with

opposite-sign-same-flavour (OSSF) leptons, combined with the missing energy from the

undetected neutralinos.4 By taking different combinations of the visible decay products,

one can form various invariant masses; mll, mllq, mhigh
lq and mlow

lq , where mhigh
lq is the

higher of the two mlq invariant masses that can be formed in the event, and mlow
lq is the

4Note that this does not preclude the possibility of selecting the usual two body cascade process, and

we consider ways to resolve this ambiguity in section 5.
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Particle Mass/GeV

χ̃0
1 95

χ̃0
2 179

χ̃0
3 332

χ̃0
4 353

χ̃±
1 179

χ̃±
2 353

ẽL 377

ẽR 329

ν̃e 368

τ̃1 315

τ̃2 378

ν̃τ 365

g̃ 615

ũL 631

ũR 624

d̃L 636

d̃R 617

b̃1 560

b̃2 604

t̃1 455

t̃2 614

h0 116

H0 242

A0 240

H± 255

Decay Mode BR

χ̃0
2 → χ̃0

1qq̄ 62%

χ̃0
2 → χ̃0

1bb̄ 19%

χ̃0
2 → χ̃0

1l
+l− 3.5%

χ̃0
2 → χ̃0

1τ
+τ− 2.7%

χ̃0
2 → χ̃0

1νlν̄l 7.9%

χ̃0
2 → χ̃0

1ντ ν̄τ 3.9%

χ̃0
3 → χ̃±

1 W 62%

χ̃0
3 → χ̃0

1Z 14%

χ̃0
3 → χ̃0

2Z 21%

χ̃0
3 → χ̃0

1h 2.7%

χ̃0
4 → χ̃±

1 W 67%

χ̃0
4 → χ̃0

1Z 3.4%

χ̃0
4 → χ̃0

2Z 2.7%

χ̃0
4 → χ̃0

1h 9.1%

χ̃0
4 → χ̃0

1H 1.2%

χ̃0
4 → χ̃0

2h 16.5%

χ̃±
1 → χ̃0

1W
± 99%

χ̃±
2 → χ̃0

1W
± 9.7%

χ̃±
2 → χ̃0

2W
± 39%

χ̃±
2 → χ̃±

1 Z 30%

χ̃±
2 → χ̃±

1 h 20%

Table 1: The mass spectrum of the NUHM

point defined in the text, as given by ISAJET

7.72.

Table 2: The dominant chargino and neu-

tralino decay processes at the NUHM point

defined in the text, as given by ISAJET 7.72,

where q denotes a quark from the first two

generations, and l is a lepton from the first

two generations.

lower. These will have maxima resulting from kinematic limits, whose position is given by

a function of mq̃, mχ̃0
2

and mχ̃0
1
, and we derive these for each case below.

In the following derivations, we will use bold type for three momenta, and will denote

four vector quantities by explicitly showing Lorentz indices. In addition, we will introduce

a convention for representing squared masses by a non-bold character (e.g. c = m2
q̃).

3.2 mll endpoint

The endpoint of the mll distribution results from the three body decay of the χ̃0
2, and is

– 5 –
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Decay Mode BR Decay Mode BR Decay Mode BR

(ũL, c̃L) → χ̃0
2q 30% (ũR, c̃R) → χ̃0

1q 96% g̃ → b̃1b 81%

(ũL, c̃L) → χ̃0
4q 2% (ũR, c̃R) → χ̃0

2q 1% g̃ → b̃2b 4%

(ũL, c̃L) → g̃q 1.5% (ũR, c̃R) → g̃q 2.3% g̃ → χ̃±
1 qq̄ 6.8%

(ũL, c̃L) → χ̃+
1 q 63% g̃ → χ̃0

1qq̄ 2.2%

(ũL, c̃L) → χ̃+
2 q 2.5% g̃ → χ̃0

2qq̄ 3.4%

(d̃L, s̃L) → χ̃0
1q 2.1% (d̃R, s̃R) → χ̃0

1q 98%

(d̃L, s̃L) → χ̃0
2q 30% (d̃R, s̃R) → χ̃0

2q 1%

(d̃L, s̃L) → χ̃0
4q 2.7%

(d̃L, s̃L) → χ̃−
1 q 56%

(d̃L, s̃L) → χ̃−
2 q 8%

b̃1 → χ̃0
1b 3.6% t̃1 → χ̃0

1t 17%

b̃1 → χ̃0
2b 26% t̃1 → χ̃0

2t 13%

b̃1 → χ̃0
3b 2.2% t̃1 → χ̃+

1 b 50%

b̃1 → χ̃0
4b 2.3% t̃1 → χ̃+

2 b 20%

b̃1 → χ̃−
1 t 36%

b̃1 → χ̃−
2 t 26%

b̃1 → t̃1W 3.8% t̃2 → t̃1h 3.6%

b̃2 → χ̃0
1b 13% t̃2 → χ̃0

1t 1.8%

b̃2 → χ̃0
2b 2.4% t̃2 → χ̃0

2t 8.5%

b̃2 → χ̃0
3b 13% t̃2 → χ̃0

3t 9.5%

b̃2 → χ̃0
4b 14% t̃2 → χ̃0

4t 27%

b̃2 → χ̃−
1 t 3.2% t̃2 → χ̃+

1 b 22%

b̃2 → χ̃−
2 t 46% t̃2 → χ̃+

2 b 21%

b̃2 → t̃1W 8.2% t̃2 → t̃1Z 7%

l̃L → χ̃0
1l 12% l̃R → χ̃0

1l 99% ν̃l → χ̃0
1νl 17%

l̃L → χ̃0
2l 33% ν̃l → χ̃0

2νl 24%

l̃L → χ̃−
1 νe 54% ν̃l → χ̃+

1 l 59%

τ̃1 → χ̃0
1τ 81% τ̃2 → χ̃0

1τ 16% ν̃τ → χ̃0
1ντ 17%

τ̃1 → χ̃0
2τ 6.9% τ̃2 → χ̃0

2τ 32% ν̃τ → χ̃0
2ντ 24%

τ̃1 → χ̃−
1 ντ 12% τ̃2 → χ̃−

1 ντ 50% ν̃τ → χ̃+
1 τ 60%

Table 3: The dominant sfermion decay processes at the NUHM point defined in the text, as given

by ISAJET 7.72, where q denotes a quark from the first two generations, and l is a lepton from the

first two generations.

given trivially by the mass difference between the χ̃0
2 and the χ̃0

1:

(m2
ll)

max = (mχ̃0
2
− mχ̃0

1
)2. (3.1)
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3.3 mllq endpoint and threshold

In calculating the mllq endpoint, we follow the method given in appendix E of [4] and treat

the decay as shown in figure 2, where we have combined the two leptons into a single object

L, with an invariant mass given by mll. We know from the dilepton invariant mass that

mll ≡ mL must lie within a specific range:

mL = λ(ma − mz), λ ∈ [0, 1] (3.2)

If we look at the decay of figure 2 in the rest frame of a, we can conserve four momentum

to obtain the following expressions for the three momenta of q and L:

L2 = z2 = [m2
L,m2

a,m
2
z ] (3.3)

q2 = c2 = [0,m2
a,m

2
c ] (3.4)

where

[x, y, z] ≡ x2 + y2 + z2 − 2(xy + xz + yz)

4y
(3.5)

which uses the Källen invariant. We have treated the quark as massless.

Taking q to be massless, the invariant mass of q and L is in general given by

m2
qL = gµν(Lµ + qµ)(Lν + qν) (3.6)

= m2
L + 2|q|(EL − |L| cos θ) (3.7)

in which θ is the angle between L and q in the rest frame of a, the intermediate particle.

The maximum will occur when cos θ is equal to -1, and hence L and q are back to back

in the a rest frame. Combining this with our knowledge of |L| and |q| from equations 3.3

and 3.4, we obtain the expression for the endpoint of the mllq distribution in terms of mL:

(mllq)
2 = Lm +

(c − a)

2a

[

Lm − (z − a) +
√

((a + z) − Lm)2 − 4az
]

(3.8)

where Lm = m2
L, c = m2

c , a = m2
a and z = m2

z. Lm can take any value in the range specified

by equation 3.2, and we now need to maximise equation 3.8 by considering separately the

cases where λ = 0, 0 < λ < 1 and λ = 1. After doing this, we obtain two possible

expressions for the maximum of the mllq distribution:

(m2
llq)

max =

{

(mq̃ − mχ̃0
1
)2 if m2

χ̃0
2

> mq̃mχ̃0
1

(m2
q̃ − m2

χ̃0
2

)(m2
χ̃0

2

− m2
χ̃0

1

)/m2
χ̃0

2

otherwise.
(3.9)

In addition to finding an edge in the mllq distribution, one can observe a threshold.

Equation 3.7 has a minimum when cos θ is equal to 1, in which case one obtains a minimum

value of mllq:

(m2
llq)

min = Lm +
(c − a)

2a

[

Lm − (z − a) −
√

((a + z) − Lm)2 − 4az
]

(3.10)

If Lm lies at the lower end of its allowed range, then we have Lm = mmin
llq = 0. However,

we can raise the minimum value of mllq by looking at the subset of events for which Lm

is greater than some arbitrary cut value. This will then give us an observable threshold in

the mllq distribution.
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Figure 3: The two rest frames involved in the squark cascade decay.

3.4 mhigh
lq and mlow

lq endpoints

In the case of the mllq endpoint, we showed that there are in fact two expressions, each of

which applies in a specific region of mass space. In anticipation of this, we used a general

method to avoid missing one of the solutions.

The mhigh
lq endpoint is conceptually much easier, however, as we only have to maximise

the invariant mass that we can make from one of the leptons. The two sequential decays

are shown in figure 3, where we show the effect of a boost from the q̃ rest frame to the χ̃0
2

rest frame. Any maximum in the mlq invariant mass must arise from having the relevant

lepton (the ‘interesting lepton’) back to back with the quark in the χ̃0
2 rest frame. We can

thus consider three extreme cases for the configuration of the leptons and χ̃0
1 in the χ̃0

2 rest

frame:

1. The χ̃0
1 is produced at rest, and the two leptons are back to back with one of them

anti-parallel to the quark.

2. One of the leptons is produced at rest, and so the χ̃0
1 is produced back to back with

the other lepton, with the interesting lepton being anti-parallel to the quark.

3. None of the particles from the three body decay is produced at rest, in which case we

will get the highest invariant mass by having the interesting lepton emerging anti-

parallel to the quark, and the other two particles travelling in the same direction as

the quark.

Obtaining the mlq endpoint is simply a case of working out which of these gives the highest

invariant mass. A short calculation gives us:

((mhigh
lq )2)max =

(m2
q̃ − m2

χ̃0
2

)(m2
χ̃0

2

− m2
χ̃0

1

)

m2
χ̃0

2

(3.11)

The mlow
lq endpoint is harder to obtain than the mhigh

lq endpoint, given that we want

the maximum value of the smallest mlq invariant mass it is possible to form in an event.

– 8 –
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We apply a similar approach to that used in the previous subsection, and visualise the

decay configuration that will give us the maximum before working out the endpoint.

In this case, we have proved that there is a local mlow
lq maximum when the two leptons

are produced parallel in the χ̃0
2 rest frame, travelling anti-parallel to the χ̃0

1 (which therefore

travels parallel to the quark). Note that this does not exclude the possibility of other

local maxima, but numerical simulation has not revealed any. We therefore take this

configuration to give the global maximum of mlow
lq .5

A short calculation gives:

((mlow
lq )2)max =

(m2
q̃ − m2

χ̃0
2

)(m2
χ̃0

2

− m2
χ̃0

1

)

2m2
χ̃0

2

(3.12)

3.5 Summary

Having obtained endpoints for the mll, mllq, mhigh
lq and mlow

lq distributions, we see that the

expressions are very similar. The ratio of the mhigh
lq and mlow

lq endpoint positions will always

be
√

2, and, in a particular mass region, the mllq endpoint is coincident with the mhigh
lq

endpoint. This ultimately means that there may not be enough information to precisely

determine the mass differences involved in the decay chain, a point that will be discussed

further in section 5.

4. Observation of three body endpoints in NUHM model

Having derived the endpoints for the process depicted in figure 1, we now discuss a concrete

physics example by performing a Monte Carlo study of the NUHM model described in

section 2.

4.1 Event generation and simulation

The mass spectrum and decay table of the NUHM point were taken from ISAJET 7.72

using the ISAWIG interface. We subsequently generated 3,300,000 signal events (corre-

sponding to an integrated luminosity of 100 fb−1), using HERWIG 6.5, where the sample

contains all SUSY events rather than those that represent the channel of interest. This

implements three body decays of SUSY particles with spin correlations, with the decays of

interest here being:

1. χ̃0
2 → Zχ̃0

1 → l+l−χ̃0
1

2. χ̃0
2 → ll̃ → l+l−χ̃0

1

where the Z and the slepton are off-shell. These generated events are then passed through

the ATLFAST detector simulation, whose jet cone algorithm used a cone with ∆R = 0.4.

Electrons, muons and jets were subject to a minimum pT cut of 5, 6 and 10 GeV respectively.

5Other local maxima, were any to exist, would occur in configurations in which m
low
lq were equal to m

high

lq

but in which the moduli of the three momenta of the leptons were unequal (but coplanar with the quark)

in the rest frame of the heavier neutralino.
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We note that the ATLFAST reconstruction algorithms affect the ability to reconstruct

leptons and jets in close proximity, and this is potentially a source of systematic error in

our endpoints observations (particularly in the threshold position). This will also occur

in full simulation, though to a lesser extent. A study of these systematic effects in both

the fast and full simulation is long overdue, but is sufficiently complicated to warrant a

separate publication. We note in passing that this affects all previous endpoint analyses,

and is not specific to that considered here.

4.2 Selection cuts

In order to observe clear endpoints from the cascade decay process, it is necessary to first

isolate a clean sample of squark decay events. One can select events with two OSSF leptons

and a large amount of missing energy, and can also exploit the fact that one expects hard

jets in SUSY events. Hence, all plots that follow are subject to the following cuts:

• Emiss

T > 300 GeV;

• exactly two opposite-sign leptons with pT > 5 GeV for electrons and pT > 6 GeV for

muons, with |η| < 2.5;

• at least two jets with pT > 150 GeV;

The Emiss

T and jet requirements should be sufficient to ensure that the events would be

triggered by ATLAS. For example, these events should pass both specialised Supersymme-

try trigger (“j70+xE70”: 1 jet > 70 GeV and Emiss

T > 70 GeV) and the inclusive missing

energy trigger (“xE200”: Emiss

T > 200 GeV) — see [14] and references therein. There are

of course many SM processes that contribute to the dilepton background in any SUSY

analysis, though it has been shown that these are highly suppressed once an OSSF cut is

used in conjunction with cuts on lepton and jet pT , and on missing energy. Although there

is in principle still a tail of SM events that can contribute, it has found to be negligible in

the past (see, for example, [15]), and a full study of this background is considered to be

beyond the scope of this paper.

We also note that the OSSF lepton signature can be produced by SUSY processes other

than the decay of the χ̃0
2 (for example, chargino pair production with both charginos decay-

ing leptonically). However, a large fraction of such processes generate the two leptons with

uncorrelated families, and so produce an equal number of opposite-sign opposite-flavour

(OSOF) leptons. Thus one can “remove” this fraction (the majority) of the SUSY dilepton

background by producing “flavour subtracted plots” in which one plots the combination

e+e−+µ+µ−−e+µ−−e−µ+. Figures 7 to 11 below have all been flavour subtracted. Note

that at the end of this flavour subtraction, a small number of events from SUSY processes

producing dileptons of correlated flavour still remain. Events of this kind may be seen

in the upper tail of figure 8. Note also that events in some of the plots below have been

subjected to additional cuts (beyond the basic set detailed above). Where these additional

cuts occur, they are explained in the text.
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4.3 Note on endpoint positions

It should be remembered that the formulae for endpoint positions presented in section 3

take a squark mass as input. In reality not all squarks have the same mass, and so chains

containing squarks with different masses will have endpoints at slightly different positions.

This effect manifests itself as a smearing of the endpoints in any plots of experimental

or simulated data. Plots of this kind are shown in section 4.4 and when indicating the

positions at which endpoints are expected to be found in these plots, we are required

to choose a “typical” squark mass for insertion into the relevant endpoint formula. We

choose a 610 GeV “typical” squark mass for this purpose, although it should be borne in

mind that the actual endpoints seen in the plots will be somewhat smeared due the the

non-degeneracy of the squark masses contributing to them.

4.4 Invariant mass plots

4.4.1 mll plot

The mll distribution is shown in figure 7; 4566 events survive after cuts and background

subtraction, though it is noted that the effect of the trigger which may cut more harshly

on lepton pT has not been considered. Using the mass spectrum given in section 2, we

expect to find an endpoint at approximately 80 GeV, and this is clearly visible.

It is noted that the shape of the distribution is very different from the triangular shape

normally encountered in the case of successive two body decays resulting from the phase

space for that process, and this might prove important when attempting to distinguish

three body from two body decays. This is considered further in section 5.

4.4.2 mllq plots

As soon as we start to form invariant masses involving quarks, it is important to consider

how to select the correct quark from the cascade decay. A reasonable assumption is that

the two hardest jets in the event will come from squark decay on either side of the event,

and if we take the lowest of the two mllq invariant masses formed from the two hardest

jets in the event, this should lie below the mllq endpoint. The distribution of this mllq is

shown in figure 8, and there is a visible endpoint consistent with the predicted value of

approximately 490 GeV. The plot contains the same number of events as the mll plot, as

the cuts are the same.

In order to obtain a further constraint on the physical model underlying the data,

we construct a threshold in the mllq distribution. We follow the convention used in the

study of successive two body decays, and choose to look at the subset of events for which

mll > mmax
ll /

√
2.6 Substituting mmax

ll /
√

2 in place of Lm in equation 3.10 gives the following

threshold:

(mmin
llq )2 =

(
√

a −√
z)2

2
+

(c − a)

4a

(

3a − z − 2
√

az −
√

a2 + z2 + 4
√

az(a + z) − 10az

)

(4.1)

6It remains an open question as to whether this or similar analyses would benefit from the optimisation

of the position of this cut on mll.
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where c = m2
q̃, a = m2

χ̃0
2

and z = m2
χ̃0

1

. Traditionally (i.e. in chains with successive two-

body decays) this additional constraint requires, somewhat arbitrarily, that the angular

separation of the two leptons in the rest frame of the slepton be greater than than a

right angle. For the three-body neutralino decay considered in this paper, that geometrical

interpretation is lost, but this is of no consequence to us.

A plot of the mllq distribution is given in figure 9, where we note that, because we are

looking for a threshold, the highest of the two mllq invariant masses formed with the two

hardest jets in the event is used to make the plot. 4172 events are contained in the plot.

A threshold structure of some form is clearly observed, though it is difficult to ascertain

the precise position, as the shape of the edge is not yet a well understood function of the

sparticle masses and cut-induced ‘detector’ effects. To use the constraint from this edge to

the full, it may be necessary to repeat the analysis of [16] in the context of a three-body

final decay. The predicted value is approximately 240 GeV.

4.4.3 mlq plots

The mhigh
lq distribution is plotted by forming mllq invariant masses with the two hardest

jets in the event. The jet from the lowest mass combination is then used to form the mlq

invariant mass with each of the leptons in the events. This is our best guess for the quark

emitted in the squark cascade decay since the other jet is dominantly produced in a direct

decay q̃ → χ̃0
1q on the other side of the event and thus has a higher pT . The maximum of

these is plotted in the mhigh
lq plot (shown in figure 10), where we note that we have used

the additional cut that the dilepton invariant mass in each selected event must be less

than the dilepton endpoint. 4161 events are in the plot. There is an endpoint predicted

at about 490 GeV (we are in the mass region where it should appear at the same position

as the mllq endpoint) and this is consistent with the plot, though it is difficult to identify

the endpoint due the fact that the shape is easily confused with the tail. It is easier to see

why this is the case by looking at the distribution in a simpler context, namely one that

ignores all detector effects and which looks only at phase space which we have implemented

using a “toy” Monte Carlo. In this, we also ignore the smearing coming from the spread in

squark masses which is normally present, by generating chains with a single squark mass.

Using this toy Monte Carlo we generate plots of the distribution in the vicinity of the

edge (figures 12 and 13) and we see that the endpoint is only approached quadratically.

Although a full analysis of the tail would probably require full simulation (and thus a

separate study), we have attempted to determine how much is caused by detector smearing,

and how much is caused by background SUSY processes. Figures 4 to 6 examine the mhigh
eq

distribution, showing the Monte Carlo truth plot, the plot obtained by selecting events on

the basis of truth but with the particles reconstructed by the ATLFAST detector simulation,

and finally a plot which contains only SUSY background processes. We see that the tail

does not predominantly arise from detector smearing (which will nevertheless smear the

endpoint), but has instead a large contribution from the SUSY background. There is also

a combinatoric background related to the wrong choice of jet, but this is harder to isolate.

The mlow
lq plot is constructed in a similar fashion to the mhigh

lq plot, with the exception

that we take the lowest of the two possible mlq combinations in each event. The result is

– 12 –
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Figure 4: The truth distribution for the

mhigh
eq invariant mass, taken from the Herwig

event record as recorded in ATLFAST. The dis-

tribution exhibits a clean edge with no tail.

Figure 5: The mhigh
eq distribution obtained

by selecting events on the basis of Monte

Carlo truth information, but with the elec-

trons and jets reconstructed by ATLFAST. We

see that the plot has a slightly higher end-

point than the truth distribution, but no sig-

nificant tail.

Figure 6: The mhigh
eq distribution obtained using events with no decay of the form χ̃0

2 → χ̃0
1e

+e−,

representing the contribution to the plot from SUSY background processes.

shown in figure 11, where we have used an additional cut; one of the mllq invariant masses

formed from the two hardest jets in the event must lie below the approximate observed

position of the mllq endpoint, and one must lie above, leaving 1664 events in the plot. This

removes much of the tail due to incorrect squark choice, and leaves us with a very clean

endpoint at the predicted value of approximately 350 GeV.7

7We note that this extra cut is not possible in the case of the m
high

lq endpoint, as the m
high

lq distribution

is highly correlated to the mllq distribution (the events at the endpoint are the same in both cases). Hence,

performing this cut on the m
high

lq distribution artificially removes any events beyond the endpoint.
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Figure 7: The mll distribution for the

NUHM model defined in the text, with

flavour subtraction.

Figure 8: The flavour subtracted mllq dis-

tribution for the NUHM model defined in

the text, constructed by taking the lowest

mllq invariant mass that can be formed from

the two hardest jets in the event.

Figure 9: The flavour subtracted mllq threshold plot, constructed using the highest of the mllq

invariant masses that can be formed from the two hardest jets in each selected event.

5. Discussion

Having collected a series of endpoint plots and derived their positions in terms of the

sparticle masses involved in our decay chain, we ought in principle to be able to reconstruct

the masses in the chain. This is not as simple as it first appears, however, for the following

reasons:

1. Our NUHM point is in the mass region where the mhigh
lq endpoint is in the same

position as the mllq endpoint, and we also know that the mlow
lq edge is related to

these other two merely through multiplication by a constant factor. Discounting
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Figure 10: The flavour subtracted mhigh
lq

distribution for the NUHM model defined in

the text, constructed by taking the jet (from

the two hardest jets in the event) that gives

the lowest mllq invariant mass and forming

the highest invariant mass that one can make

with the two leptons in the event.

Figure 11: The flavour subtracted mlow
lq dis-

tribution for the NUHM model defined in

the text, constructed by taking the jet (from

the two hardest jets in the event) that gives

the lowest mllq invariant mass and forming

the highest invariant mass that one can make

with the two leptons in the event.
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Figure 12: A toy Monte Carlo calculation

of the shape of an example mhigh
lq distribu-

tion (for particle masses of mχ̃0

1

= 95GeV,

mχ̃0

2

= 179GeV and mq̃ = 610GeV similar

to those in the NUHM model defined in the

text) using the approximation in which all

particles are taken to be scalars, i.e. phase-

space only. The calculation assumes 100%

acceptance and does not model any detector

effects. mhigh
lq values are in GeV.

Figure 13: A zoomed view of the mhigh
lq

phase space distribution (left) in the vicin-

ity of the end point (mhigh
lq )max, the posi-

tion of which is given by the vertical line at

494.24GeV. mhigh
lq values are in GeV.
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the poorly measured threshold, we thus only have two equations in three unknowns

(we can use the mll endpoint as our second equation), and we do not have enough

information to constrain the masses.

2. The observation of endpoints does not reveal anything about the decay process that

produces them, and the shapes of the lepton-jet invariant mass distributions in this

paper are not dissimilar to those produced by chains of successive two body decays.

Hence, we need to consider how we would in principle distinguish between the two

cases to be certain that we are reconstructing the correct masses.

Given that the purpose of this note is simply to present a derivation of the three body

endpoint expressions and demonstrate their existence in a SUSY model, we will not imple-

ment solutions to either of these problems. However, the following discussion will suggest

possible answers to both.

5.1 Mass reconstruction

In order to reconstruct the sparticle masses in our process, we will need to supply extra

constraints. One possible method involves going one step higher in the decay chain, and

searching for decays of the form:

g̃ → q̃q → χ̃0
2qq → χ̃0

1qqll (5.1)

This will give us more endpoints, and hence we will obtain direct constraints on the masses

of the system. This is similar to an approach used for two body decays in [17], and would

have the advantage of providing a measurement of the gluino mass. The problem here is

that our NUHM model has a relatively light gluino, which is lighter than the squarks of the

first two generations. Hence, the method will only be applicable to decay chains involving

stop and sbottom squarks, and we see that whilst this approach may be helpful in some

cases it is certainly not generally applicable to all regions of parameter space.

Another approach is to use other observables to constrain sparticle masses. Our pre-

vious work in [6] demonstrated that one can obtain a dramatic improvement in mass

measurements by combining exclusive data (such as endpoint information) with inclusive

observables (such as the cross-section of events passing a missing pT cut, to give one exam-

ple). This analysis could be repeated here, and with enough inclusive observables one could

obtain good measurements of the sparticle masses involved in our cascade process. This

has the advantage of being generally applicable regardless of the mass spectrum, though it

relies on specifying a particular SUSY model in which to perform the analysis.

5.2 Decay chain ambiguity

We have already remarked that it is not trivial to distinguish three body endpoints from

two body endpoints, and hence the observation of endpoints alone is not enough to be

able to reconstruct masses. Even assuming that we do have a way to do this, we have to

consider that a cascade decay process involving, say, a χ̃0
4 and χ̃0

2 instead of a χ̃0
2 and χ̃0

1

would not change the observed signature, and so one cannot assume that we know exactly
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which process is causing the observed edges. This latter point was previously considered

by us in [6] for the case of two body decays, and here we will concern ourselves with the

former question of distinguishing between two and three body decays.

In the previous sections we have already seen one characteristic feature of three body

decay chains; the ratio of the mllq and mlow
lq endpoint positions is always

√
2. Provided one

can obtain precise measurements of these quantities, we would have a clue that we were

looking at three body processes, although this could easily be faked by two body decays

that conspired to produce endpoints in similar positions.

For an extra clue, consider that although the shapes of the lepton-jet distributions in

three body decays are not dissimilar to those encountered in two body processes, this is not

true of the mll distribution, and hence there is potentially some information contained in

the shape of the dilepton distribution. In the two-body case, one obtains a triangular shape

that is identical to the phase space distribution. In contrast, the three-body distribution

in figure 7 is heavily peaked toward the endpoint. Unfortunately, this is unlikely to be

true over the whole of parameter space; the three body decay proceeds via an off-shell Z or

slepton, and the mll distribution is peaked toward the endpoint when the endpoint (which

is the same as the mass difference between the χ̃0
2 and the χ̃0

1) approaches, for example,

the Z mass, such that the shape will depend heavily on the SUSY point. Furthermore, a

previous study investigated the effect on the mll shape of incorporating the matrix element

for the three body decay process in addition to the phase space, for different points in

mSUGRA parameter space, and although for some points it dramatically altered the pure

phase space result there were other points where the three body and phase space shapes

were virtually indistinguishable [18].

To summarise, we may be fortunate enough to find that nature presents a point at

which we can distinguish three body decays from two body processes simply by looking at

the endpoint shapes and positions, but this is certainly not guaranteed. For this reason,

a better approach to the problem of mass reconstruction is to use the Markov Chain

techniques presented in [6], where no assumption is made about the processes causing the

observed endpoints. This allows us to select a region of the parameter space consistent

with the data which can be used as a basis for further investigation.

6. Conclusions

We have derived expressions for the position of the kinematic endpoints arising in cascade

decays featuring a two body decay followed by a three body decay, and have applied them

to the lepton-jet invariant mass distributions given by a squark decay process. We have

performed the first analysis of an NUHM model as it would appear within the ATLAS

detector, and, using standard cuts, have observed endpoints that are consistent with the

predicted positions. We thus conclude that the technique is a viable extension of the

current method used in chains of two body decays.

We have discussed the problem of mass reconstruction in models with a similar phe-

nomenology, and have found that it is hampered by both a lack of constraint from the

endpoint equations themselves, and the problem of distinguishing three body from two
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body decay processes. In the case of the NUHM benchmark point γ, one would be able to

identify the decays as three body decays by using the shape of the dilepton invariant mass

distribution.
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